133 research outputs found

    TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells

    Get PDF
    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4+CD8+ double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR)

    New Insights into Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Genetic Analysis of gyrA and gyrB Mutations

    Get PDF
    Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis

    Bmp7 Functions via a Polarity Mechanism to Promote Cloacal Septation

    Get PDF
    During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood.We previously detected Bone morphogenetic protein 7 (Bmp7) expression in the urorectal mesenchyme (URM), and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK) pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse.Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations

    Drosophila Histone Deacetylase-3 Controls Imaginal Disc Size through Suppression of Apoptosis

    Get PDF
    Histone deacetylases (HDACs) execute biological regulation through post-translational modification of chromatin and other cellular substrates. In humans, there are eleven HDACs, organized into three distinct subfamilies. This large number of HDACs raises questions about functional overlap and division of labor among paralogs. In vivo roles are simpler to address in Drosophila, where there are only five HDAC family members and only two are implicated in transcriptional control. Of these two, HDAC1 has been characterized genetically, but its most closely related paralog, HDAC3, has not. Here we describe the isolation and phenotypic characterization of hdac3 mutations. We find that both hdac3 and hdac1 mutations are dominant suppressors of position effect variegation, suggesting functional overlap in heterochromatin regulation. However, all five hdac3 loss-of-function alleles are recessive lethal during larval/pupal stages, indicating that HDAC3 is essential on its own for Drosophila development. The mutant larvae display small imaginal discs, which result from abnormally elevated levels of apoptosis. This cell death occurs as a cell-autonomous response to HDAC3 loss and is accompanied by increased expression of the pro-apoptotic gene, hid. In contrast, although HDAC1 mutants also display small imaginal discs, this appears to result from reduced proliferation rather than from elevated apoptosis. The connection between HDAC loss and apoptosis is important since HDAC inhibitors show anticancer activities in animal models through mechanisms involving apoptotic induction. However, the specific HDACs implicated in tumor cell killing have not been identified. Our results indicate that protein deacetylation by HDAC3 plays a key role in suppression of apoptosis in Drosophila imaginal tissue

    Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of AGAMOUS-LIKE36

    Get PDF
    Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin–specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin–dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds

    Draft Genome Sequencing of Giardia intestinalis Assemblage B Isolate GS: Is Human Giardiasis Caused by Two Different Species?

    Get PDF
    Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16Ă— coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p
    • …
    corecore